Numbering System Binary , Decimal, Octal , Hexadecimal

Heba El-Rahman Hassan Ali heba.hassan110@gmail.com

The decimal system (base 10)

- The word decimal is derived from the Latin root decem (ten). In this system the base $\mathrm{b}=10$ and we use ten symbols

$$
S=\{0,1,2,3,4,5,6,7,8,9\}
$$

o The symbols in this system are often referred to as decimal digits or just digits.

The binary system (base 2)

- The word binary is derived from the Latin root bini (or two by two). In this system the base $\mathrm{b}=2$ and we use only two symbols,

$$
s=\{0,1\}
$$

- The symbols in this system are often referred to as binary digits or bits (binary digit).

The hexadecimal system (base 16)

- The word hexadecimal is derived from the Greek root hex (six) and the Latin root decem (ten). In this system the base $b=16$ and we use sixteen symbols to represent a number. The set of symbols is

$S=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$

- Note that the symbols A, B, C, D, E, F are equivalent to $10,11,12,13,14$, and 15 respectively. The symbols in this system are often referred to as hexadecimal digits.

The octal system (base 8)

- The word octal is derived from the Latin root octo (eight). In this system the base $\mathrm{b}=8$ and we use eight symbols to represent a number. The set of symbols is

$$
S=\{0,1,2,3,4,5,6,7\}
$$

Summary of the four positional systems

- Table 2.1 shows a summary of the four positional number systems discussed before.

Table 2.1 Summary of the four positional number systems

System	Base	Symbols	Examples
Decimal	10	$0,1,2,3,4,5,6,7,8,9$	2345.56
Binary	2	0,1	$(1001.11)_{2}$
Octal	8	$0,1,2,3,4,5,6,7$	$(156.23)_{8}$
Hexadecimal	16	$0,1,2,3,4,5,6,7,8,9$, A, B, C, D, E, F	$(\mathrm{A} 2 \mathrm{C} . \mathrm{A} 1)_{16}$

- Table 2.2 shows how the number 0 to 15 is represented in different systems.

Table 2.2 Comparison of numbers in the four systems

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1001	10	11
9	1011	12	9
10	1100	13	A
11	1110	15	C
12	1111	15	D
13	14	17	F
15	14	7	

Conversion Among Bases

- The possibilities:

Quick Example

$25_{10}=11001_{2}=31_{8}=19_{16}$
 Base

Decimal to Decimal (just for fun)

Decimal

Binary

Binary to Decimal

Decimal

Octal

Binary

Binary to Decimal

- Technique
> Multiply each bit by 2^{n}, where n is the "weight" of the bit
> The weight is the position of the bit, starting from 0 on the right
Add the results

Example 1:

Octal to Decimal

Decimal

Octal

Binary

Octal to Decimal

- Technique
> Multiply each bit by 8^{n}, where n is the "weight" of the bit
> The weight is the position of the bit, starting from 0 on the right
Add the results

Example 2:

$$
724_{8} \Rightarrow \begin{array}{rrr}
4 \times 8^{0} & 4 \\
2 \times 8^{1}= & 16 \\
7 \times 8^{2}= & \frac{448}{468_{10}}
\end{array}
$$

Hexadecimal to Decimal

Decimal

Octal

Binary

Hexadecimal to Decimal

- Technique
> Multiply each bit by 16^{n}, where n is the "weight" of the bit
> The weight is the position of the bit, starting from 0 on the right
Add the results

Example 3:

$$
\begin{array}{rl}
\mathrm{ABC}_{16} \Rightarrow \quad \mathrm{C} \times 16^{0}=12 \mathrm{x} & 1=12 \\
\mathrm{~B} \times 16^{1}=11 \times 16 & =176 \\
\mathrm{~A} \times 16^{2}=10 \times 256 & =\frac{2560}{2748_{10}}
\end{array}
$$

Decimal to Binary

Decimal

Octal

Binary

Decimal to Binary

- Technique
> Divide by two, keep track of the remainder
> First remainder is bit 0 (LSB, least-significant bit)
> Second remainder is bit 1
> Etc.

Example 4:

$$
125_{10}=?_{2}
$$

$2 \lcm{125}$	
2	62
2	31
2	15
2	7
2	3
2	1
	0

$$
125_{10}=1111101_{2}
$$

Octal to Binary

Decimal

Octal

Octal to Binary

- Technique
> Convert each octal digit to a 3-bit equivalent binary representation

Example 5:

$705_{8}=?_{2}$

$$
\begin{array}{ccc}
7 & 0 & 5 \\
111 & 000 & 101
\end{array}
$$

$$
705_{8}=111000101_{2}
$$

Hexadecimal to Binary

Decimal

Octal

Binary

Hexadecimal to Binary

- Technique
> Convert each hexadecimal digit to a 4-bit equivalent binary representation

Example 6:

$10 \mathrm{AF}_{16}=?_{2}$

$$
\begin{array}{cccc}
1 & 0 & A & F \\
0001 & 0000 & 1010 & 1111
\end{array}
$$

$$
10 \mathrm{AF}_{16}=0001000010101111_{2}
$$

Decimal to Octal

Decimal

Octal

Binary

Decimal to Octal

- Technique
> Divide by 8
> Keep track of the remainder

Example 7:

$1234_{10}=? ?_{8}$

$$
1234_{10}=2322_{8}
$$

Binary to Octal

Decimal

Octal

Binary

Binary to Octal

- Technique
> Group bits in threes, starting on right Convert to octal digits

Example 8:

$1011010111_{2}=?_{8}$

$$
\begin{array}{cccc}
1 & 011 & 010 & 111 \\
1 & 3 & 2 & 7
\end{array}
$$

$$
1011010111_{2}=1327_{8}
$$

Hexadecimal to Octal

Decimal

Binary

Hexadecimal to Octal

- Technique
> Use binary as an intermediary

Example 9:
 $1 \mathrm{FOC}_{16}=?_{8}$

1	F	0	C	
$0 \mid 001$	1111	$00 \mid 00$	$1 \mid 100$	
1	7	4	1	4

$$
1 \mathrm{FOC}_{16}=17414_{8}
$$

Decimal to Hexadecimal

Decimal

Octal

Binary

Decimal to Hexadecimal

- Technique
> Divide by 16
> Keep track of the remainder

Example 10:

$$
1234_{10}=?_{16}
$$

$$
1234_{10}=4 D 2_{16}
$$

Binary to Hexadecimal

Decimal

Octal

Binary to Hexadecimal

- Technique
> Group bits in fours, starting on right
> Convert to hexadecimal digits

Example 11:

$1010111011_{2}=?_{16}$

$1010111011_{2}=2 \mathrm{BB}_{16}$

Octal to Hexadecimal

Decimal

Octal to Hexadecimal

- Technique
> Use binary as an intermediary

Example 12:

$1076_{8}=?_{16}$

$1076_{8}=23 E_{16}$

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1 AF

Don'† use a calculator!

Exercise - Convert ...

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1 C 3
431	110101111	657	1 AF

Thanks

