Numbering System Binary, Decimal, Octal, Hexadecimal

> Heba El-Rahman Hassan Ali heba.hassan110@gmail.com

The decimal system (base 10)

 The word decimal is derived from the Latin root decem (ten). In this system the base b = 10 and we use ten symbols

 $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

 The symbols in this system are often referred to as decimal digits or just digits.

The binary system (base 2)

 The word binary is derived from the Latin root bini (or two by two). In this system the base b = 2 and we use only two symbols,

S = {O, 1}

 The symbols in this system are often referred to as binary digits or bits (binary digit).

The hexadecimal system (base 16)

 The word hexadecimal is derived from the Greek root hex (six) and the Latin root decem (ten). In this system the base b = 16 and we use sixteen symbols to represent a number. The set of symbols is

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Note that the symbols A, B, C, D, E, F are equivalent to 10, 11, 12, 13, 14, and 15 respectively. The symbols in this system are often referred to as hexadecimal digits. The octal system (base 8)
 The word octal is derived from the Latin root octo (eight). In this system the base b = 8 and we use eight symbols to represent a number. The set of symbols is

S = {0, 1, 2, 3, 4, 5, 6, 7}

Summary of the four positional systems

Table 2.1 shows a summary of the four positional number systems discussed before.

System	Base	Symbols	Examples
Decimal	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	2345.56
Binary	2	0, 1	(1001.11) ₂
Octal	8	0, 1, 2, 3, 4, 5, 6, 7	(156.23) ₈
Hexadecimal	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	(A2C.A1) ₁₆

Table 2.1Summary of the four positional number systems

Table 2.2 shows how the number 0 to 15 is represented in different systems.

Table 2.2Comparison of numbers in the four systems

Decimal	Binary	Octal	Hexadecimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Conversion Among Bases

• The possibilities:

Quick Example

$25_{10} = 11001_2 = 31_8 = 19_{16}$ Base

Binary to Decimal

Binary to Decimal

Technique

- Multiply each bit by 2ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right

> Add the results

Example 1:

Bit "O"

 $101011_2 \implies 1 \ge 2^0 = 1$ $1 \times 2^1 = 2$ $0 \times 2^2 = 0$ $1 \times 2^3 = 8$ $0 \times 2^4 = 0$ $1 \times 2^5 = 32$ 43_{10}

Octal to Decimal

Technique

- Multiply each bit by 8ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right

> Add the results

Example 2:

$$724_8 \implies 4 \times 8^0 = 4$$

$$2 \times 8^1 = 16$$

$$7 \times 8^2 = \frac{448}{468_{10}}$$

17

Hexadecimal to Decimal

Technique

- Multiply each bit by 16ⁿ, where n is the "weight" of the bit
- The weight is the position of the bit, starting from 0 on the right

> Add the results

Example 3:

$$ABC_{16} \implies C \times 16^{0} = 12 \times 1 = 12$$

B x 16¹ = 11 x 16 = 176
A x 16² = 10 x 256 = 2560

2748₁₀

20

Decimal to Binary

Technique

- > Divide by two, keep track of the remainder
- First remainder is bit 0 (LSB, least-significant bit)
- > Second remainder is bit 1
- > Etc.

Example 4:

 $125_{10} = ?_2$

 $125_{10} = 1111101_{2}$

Octal to Binary

Octal to Binary

Technique

 Convert each octal digit to a 3-bit equivalent binary representation

Example 5:

$705_8 = ?_2$

7 0 5 **J J J** 111 000 101

$705_8 = 111000101_2$

Hexadecimal to Binary

Technique

 Convert each hexadecimal digit to a 4-bit equivalent binary representation

Example 6:

$10AF_{16} = ?_2$

$10AF_{16} = 0001000010101111_2$

Decimal to Octal

Technique

- > Divide by 8
- > Keep track of the remainder

Example 7: $1234_{10} = ?_8$

$1234_{10} = 2322_8$

Binary to Octal

Binary to Octal

Technique

- > Group bits in threes, starting on right
- Convert to octal digits

Example 8: 1011010111₂ = ?₈

1 011 010 111 **1 1 1 1 1** 1 3 2 7

$1011010111_2 = 1327_8$

Hexadecimal to Octal

Technique

> Use binary as an intermediary

$|1F0C_{16}| = 17414_{8}$

Decimal to Hexadecimal

40

Technique

- > Divide by 16
- Keep track of the remainder

Example 10:

 $1234_{10} = ?_{16}$

 $1234_{10} = 4D2_{16}$

Binary to Hexadecimal

Binary to Hexadecimal

Technique

- > Group bits in fours, starting on right
- > Convert to hexadecimal digits

Example 11: $1010111011_2 = ?_{16}$

$1010111011_2 = 2BB_{16}$

Octal to Hexadecimal

Technique

> Use binary as an intermediary

 $1076_8 = 23E_{16}$

Exercise – Convert ...

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Don't use a calculator!

Exercise – Convert ...

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Thanks